Studies on Crystal Growth, Vibrational, Electronic Properties of Nonlinear Optical Crystal: Triglycine Phosphate

JASEM Front Page
Abstract:
Nonlinear optics is a topic of much current interest that exhibits a great diversity. This is due to the technological potentials of certain nonlinear optical effects for photonic based technologies. Many NLO crystals grown by mixing amino acids with various organic and inorganic acids have been reported in the literature. Hence, glycine mixed semi-organic material will be of special interest as a fundamental building block to develop many complex crystals with improved NLO properties. In this context, the present work it is attempted to grow NLO active Triglycine phosphate [(NH2CH2COOH)3H3PO4](TGP) crystal from aqueous solution at room temperature by slow evaporation method. The geometry, intermolecular hydrogen bonding and harmonic vibrational wavenumbers of TGP was investigated with the help of B3LYP density functional theory (DFT) methods. Natural Bond Orbital (NBO) analysis confirms the occurrence of strong intermolecular N-H...O hydrogen bond. Second harmonic frequency generation was examined by Kurtz and Perry powder test. Theoretical first order hyperpolarizability value was calculated.

Keywords:TGP, DFT, NBO, XRD, SHG

References:

  1. M.D. Aggarwal, J.J. Stephens .Optoe1ectron. Adv. Mater. 5 (2003) 3.
  2. C. Razzetti, M. Ardoino, C. Paorici . Cryst. Res. Technol. 37 (2002) 456.
  3. J. McArdle, J.N. Sherwood, A.C. Damask . J. Cryst. Growth 22 (1974) 193.
  4. E.M. Hampton, B.S. Shah, N. Sherwood . J. Cryst. Growth 22 (1974) 22.
  5. S. Dhaushkodi, K. Vasantha . Cryst. Res. Technol. 39 (2004) 3.
  6. H.L. Shat . Bull. Mater. Sci. 17 (1994) 1233.
  7. Dacko S., Czapla Z., Baran J., Drozd M., Phys.Lett. A, 223 (1996), 217.
  8. A. Datta, S.K. Pati, J. Chem. Phys. 118 (2003) 8420–8427.
  9. M.N. Bhat, S.M. Dharma prakash, J. Cryst. Growth 236 (2002) 376–380.
  10. S. Debrusa, M. Maya, J. Baryckib, T. Glowiakc, A.J. Barnesd, H.Ratajczakc, D. Xuef, J. Mol. Struct. 661-662 (2003) 595.
  11. A.A. Sukhorukov, S. Kivshar Yu, J. Opt. Soc. Am. B 19 (2002)772.
  12. G. Maroulis, J. Chem. Phys. 113 (2000) 1813.
  13. S.F. Mingaleev, S. Kivshar Yu, Opt. Photon. News 13 (2002) 48.
  14. B.A.S. Mendis, K.M.N. de Silva, J. Mol. Struct. (Theochem) 678(2004) 31.
  15. S.P. Liyanage, R.M. de Silva, K.M.N. de Silva, J. Mol. Struct.(Theochem) 639 (2003)195.
  16. M. Montejo, A. Navarro, G.J. Kealey, J. Vazquez, J.J.L. Gonzalez, J.Am. Chem. Soc. 126 (2004) 15087.
  17. Frisch, M. J et al. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2009.
  18. Weinhold, F.; Landis, C. R. Valency and bonding: A Natural Bond Orbital Donor-Acceptor PerspectiVe; Cambridge University Press: NewYork, 2005.
  19. Weinhold, F.; Landis, C. R. Chem. Educ. Res. Pract. 2001, 2, 91.
  20. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. ReV. 1988, 88, 899.
  21. Foster, J. P.; Weinhold, F. J. Am. Chem. Soc. 1980, 102, 7211.
  22. S.K. Kurtz, T.T. Perry, A Powder Technique for the Evalua-tion of Nonlinear Optical Materials, J. Appl. Phys. 39 (1968) 3798.